|
||||||||||
| PREV LETTER NEXT LETTER | FRAMES NO FRAMES | |||||||||
Storable.
IDGTrainSMParameterSet instance from
the class that can be instantiated using this IDGTrainSMParameterSet.
IDGTrainSMParameterSet instance for the
specified class.
Alphabets ignore the case.
IntLists are used during the parallel computation of the gradient.
IntLists that are used while computing
the partial derivation.
ImageResult from a BufferedImage.
Storable.
SubclassFinder.findSubclasses(Class, String)
thereby enabling to find self-implemented classes not included in the Jstacs class hierarchy.
IndependentProductDiffSM from a given series of
independent DifferentiableStatisticalModels.
IndependentProductDiffSM from given series of
independent DifferentiableStatisticalModels and lengths.
Storable.
IndependentProductDiffSS from a given series of
independent DifferentiableSequenceScores.
IndependentProductDiffSS from given series of
independent DifferentiableSequenceScores and lengths.
Storable.
IndependentProductDiffSS.score should be used for the specific parts.
AbstractStringExtractor that can be seen as a filter.se.
InhCondProb instance.
InhCondProb instance.
Storable.
InhConstraint instance.
Storable.
InhomogeneousDGTrainSM).InhomogeneousDGTrainSM from a given
IDGTrainSMParameterSet.
Storable.
BayesianNetworkDiffSM
that is an inhomogeneous Markov model.order.
InhomogeneousMarkov from the corresponding
InstanceParameterSet parameters.
Storable.
InstanceParameterSet that defines the parameters of
an InhomogeneousMarkov structure Measure.InhomogeneousMarkov.InhomogeneousMarkovParameterSet with empty
parameter values.
InhomogeneousMarkov.InhomogeneousMarkovParameterSet with the
parameter for the order set to order.
InhomogeneousMarkov.InhomogeneousMarkovParameterSet from its XML
representation as defined by the Storable
interface.
SamplingScoreBasedClassifier.scoringFunctionss randomly
DifferentiableSequenceScore.
DifferentiableSequenceScore randomly.
DifferentiableStatisticalModel uniformly if it is a AbstractMixtureDiffSM.
motif randomly using for instance DifferentiableSequenceScore.initializeFunctionRandomly(boolean).
BNDiffSMParameterTree randomly.
Parameters, which is a
ParameterSet.ParameterList.
Parameters, which is a
ParameterSet.ParameterList, with an initial number of Parameters of
initCapacity.
SamplingScoreBasedClassifier.setInitParameters(double[]), null otherwise
AlphabetContainer by
incorporating additional Alphabets into an existing
AlphabetContainer.
Parameters that can be used to
instantiate another class.InstanceParameterSet from the class that can be
instantiated using this InstanceParameterSet.
Storable.
InstanceParameterSet.DurationDiffSM that use an internal memory
DataSet
s of the array, i.e.
int.IntList with
initial length 10.
IntList with
initial length size.
IntronAnnotation from a donor
SinglePositionSequenceAnnotation and an acceptor
SinglePositionSequenceAnnotation and a set of additional
annotations.
Storable.
ints and can therefore be used for discrete
AlphabetContainers with alphabets that use a huge number of symbols.IntSequence from an array of int-
encoded alphabet symbols.
IntSequence from a part of the array of
int- encoded alphabet symbols.
IntSequence from a String representation
using the default delimiter.
IntSequence from a String representation
using the delimiter delim.
IntSequence from a SymbolExtractor.
null.
true if the parameter is of an atomic data type,
false otherwise.
true if this ParameterSet contains only
atomic parameters, i.e.
true if the data type of the Result
test can be casted to that of this instance and both have
the same name and comment for the Result.
Parameter is comparable to the current instance, i.e.
ParameterSet is comparable to the current instance, i.e.
true if the Result test and the
current object have the same data type, name and comment for the result.
DiscreteAlphabet.DiscreteAlphabetParameterSet, i.e.
Alphabets.
DiscreteAlphabet.DiscreteAlphabetParameterSet, i.e.
pos is a discrete random variable,
i.e.
true if this property has been determined for a double-stranded nucleic acid.
continuous is a symbol of the Alphabet
used at position pos of the AlphabetContainer.
candidat is an element of the internal
interval.
candidate is an element of the internal
interval.
StorableResult.TRUE if the model or classifier was trained when
obtaining its XML representation stored in this StorableResult,
StorableResult.FALSE if it was not, and StorableResult.NA if the object could not be
trained anyway.
true if the model is trained, false otherwise.
true if the object is currently used in
a sampling, otherwise false.
true if the object is currently used in
a sampling, otherwise false.
BNDiffSMParameterTree is a
leaf, i.e.
true if the sequence is multidimensional, otherwise .
- isMultiDimensional() -
Method in class de.jstacs.data.sequences.Sequence.RecursiveSequence
-
- isMultiDimensional() -
Method in class de.jstacs.data.sequences.SimpleDiscreteSequence
-
- isNormalized() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.AbstractDifferentiableStatisticalModel
-
- isNormalized(DifferentiableSequenceScore...) -
Static method in class de.jstacs.sequenceScores.statisticalModels.differentiable.AbstractDifferentiableStatisticalModel
- This method checks whether all given
DifferentiableStatisticalModels
are normalized.
- isNormalized() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
-
- isNormalized() -
Method in interface de.jstacs.sequenceScores.statisticalModels.differentiable.DifferentiableStatisticalModel
- This method indicates whether the implemented score is already normalized
to 1 or not.
- isNormalized() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
-
- isNormalized() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.UniformHomogeneousDiffSM
-
- isNormalized() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
-
- isNormalized() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
-
- isNormalized() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.MixtureDurationDiffSM
-
- isNormalized() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.SkewNormalLikeDurationDiffSM
-
- isNormalized() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.UniformDurationDiffSM
-
- isNormalized() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.NormalizedDiffSM
-
- isNormalized() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.UniformDiffSM
-
- isNormalized() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
-
- isPossible(int...) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.DurationDiffSM
-
- isPossible(int...) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.PositionDiffSM
- This method returns
true if the given positions are in the domain of the
PositionDiffSM.
- isRangeable() -
Method in class de.jstacs.parameters.AbstractSelectionParameter
-
- isRangeable() -
Method in interface de.jstacs.parameters.Rangeable
- Returns
true if the parameters can be varied over a range of
values.
- isRangeable() -
Method in class de.jstacs.parameters.SimpleParameter
-
- isRanged() -
Method in class de.jstacs.parameters.MultiSelectionParameter
-
- isRanged() -
Method in interface de.jstacs.parameters.RangeIterator
- Returns
true if this RangeIterator is ranging over a
set of values.
- isRanged() -
Method in class de.jstacs.parameters.RangeParameter
-
- isRequired() -
Method in class de.jstacs.parameters.AbstractSelectionParameter
-
- isRequired() -
Method in class de.jstacs.parameters.FileParameter
-
- isRequired() -
Method in class de.jstacs.parameters.Parameter
- Returns
true if the Parameter is required,
false otherwise.
- isRequired() -
Method in class de.jstacs.parameters.ParameterSetContainer
-
- isRequired() -
Method in class de.jstacs.parameters.RangeParameter
-
- isRequired() -
Method in class de.jstacs.parameters.SimpleParameter
-
- isReverseComplementable() -
Method in class de.jstacs.data.AlphabetContainer
- This method helps to determine if the
AlphabetContainer also
computes the reverse complement of a Sequence.
- isSelected(int) -
Method in class de.jstacs.parameters.AbstractSelectionParameter
- Returns
true if the option at position idx is
selected.
- isSelected(String) -
Method in class de.jstacs.parameters.MultiSelectionParameter
- Returns the selection value of the option with key
key.
- isSelected(int) -
Method in class de.jstacs.parameters.MultiSelectionParameter
-
- isSelected(int) -
Method in class de.jstacs.parameters.SelectionParameter
- Returns
true if the option at position idx is
selected.
- isSet() -
Method in class de.jstacs.parameters.AbstractSelectionParameter
-
- isSet() -
Method in class de.jstacs.parameters.FileParameter
-
- isSet() -
Method in class de.jstacs.parameters.Parameter
- Returns
true if the parameter was set by the user,
false otherwise.
- isSet() -
Method in class de.jstacs.parameters.ParameterSetContainer
-
- isSet(String) -
Method in class de.jstacs.parameters.ParameterSetTagger
-
- isSet() -
Method in class de.jstacs.parameters.RangeParameter
-
- isSet() -
Method in class de.jstacs.parameters.SimpleParameter
-
- isShiftable() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.InhomogeneousMarkov
-
- isShiftable() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.Measure
- Indicates if
Measure supports shifts.
- isSilent() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.SimpleState
-
- isSilent() -
Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.State
- This method returns whether a state is silent or not.
- isSilent -
Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition
- A vector indicating for each state whether it is silent or not.
- isSimple() -
Method in class de.jstacs.algorithms.optimization.termination.AbsoluteValueCondition
- Deprecated.
- isSimple() -
Method in class de.jstacs.algorithms.optimization.termination.CombinedCondition
-
- isSimple() -
Method in class de.jstacs.algorithms.optimization.termination.IterationCondition
-
- isSimple() -
Method in class de.jstacs.algorithms.optimization.termination.MultipleIterationsCondition
-
- isSimple() -
Method in class de.jstacs.algorithms.optimization.termination.SmallDifferenceOfFunctionEvaluationsCondition
-
- isSimple() -
Method in class de.jstacs.algorithms.optimization.termination.SmallGradientConditon
-
- isSimple() -
Method in class de.jstacs.algorithms.optimization.termination.SmallStepCondition
-
- isSimple() -
Method in interface de.jstacs.algorithms.optimization.termination.TerminationCondition
- This method returns
false if the TerminationCondition uses either
the gradient or the direction for the decision, otherwise it returns true.
- isSimple() -
Method in class de.jstacs.algorithms.optimization.termination.TimeCondition
-
- isSimple() -
Method in class de.jstacs.data.AlphabetContainer.AbstractAlphabetContainerParameterSet
- Indicates if all positions use the same
Alphabet, i.e.
- isSimple() -
Method in class de.jstacs.data.AlphabetContainer
- Indicates whether all random variables are defined over the same range,
i.e.
- isSimple() -
Method in class de.jstacs.data.AlphabetContainerParameterSet
-
- isSimple() -
Method in class de.jstacs.data.alphabets.DNAAlphabetContainer.DNAAlphabetContainerParameterSet
-
- isSimpleDataSet() -
Method in class de.jstacs.data.DataSet
- This method indicates whether all random variables are defined over the
same range, i.e.
- isStrandModel(DifferentiableStatisticalModel) -
Static method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.StrandDiffSM
- Check whether a
DifferentiableStatisticalModel is a StrandDiffSM.
- isStrandModel() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.NormalizedDiffSM
- This method returns
true if the internal DifferentiableStatisticalModel is a StrandDiffSM otherwise false.
- isSymbol(String) -
Method in class de.jstacs.data.alphabets.DiscreteAlphabet
- Tests if a given symbol is contained in the alphabet.
- isTrained -
Variable in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
- Indicates if the instance has been trained.
- isUserSelected() -
Method in class de.jstacs.parameters.AbstractSelectionParameter
- Returns
true if the value was selected by the user.
- isVariable -
Variable in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
- This array specifies for each entry of
IndependentProductDiffSS.score whether it is able to score sequences of variable length.
- iterate(DataSet, double[], MultivariateRandomGenerator, MRGParams[]) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
- This method runs the train algorithm for the current model.
- iterate(int, double[], MultivariateRandomGenerator, MRGParams[]) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
- This method runs the train algorithm for the current model and the
internal data set.
- iterate(int, double[], MultivariateRandomGenerator, MRGParams[]) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.ZOOPSTrainSM
-
- IterationCondition - Class in de.jstacs.algorithms.optimization.termination
- This class will stop an optimization if the number of iteration reaches a given number.
- IterationCondition(int) -
Constructor for class de.jstacs.algorithms.optimization.termination.IterationCondition
- This constructor creates an instance that does not allow any further iteration after
maxIter iterations.
- IterationCondition(IterationCondition.IterationConditionParameterSet) -
Constructor for class de.jstacs.algorithms.optimization.termination.IterationCondition
- This is the main constructor creating an instance from a given parameter set.
- IterationCondition(StringBuffer) -
Constructor for class de.jstacs.algorithms.optimization.termination.IterationCondition
- The standard constructor for the interface
Storable.
- IterationCondition.IterationConditionParameterSet - Class in de.jstacs.algorithms.optimization.termination
- This class implements the parameter set for a
IterationCondition. - IterationCondition.IterationConditionParameterSet() -
Constructor for class de.jstacs.algorithms.optimization.termination.IterationCondition.IterationConditionParameterSet
- This constructor creates an empty parameter set.
- IterationCondition.IterationConditionParameterSet(StringBuffer) -
Constructor for class de.jstacs.algorithms.optimization.termination.IterationCondition.IterationConditionParameterSet
- The standard constructor for the interface
Storable.
- IterationCondition.IterationConditionParameterSet(int) -
Constructor for class de.jstacs.algorithms.optimization.termination.IterationCondition.IterationConditionParameterSet
- This constructor creates a filled instance of a parameters set.
- iterator() -
Method in class de.jstacs.data.DataSet
-
|
||||||||||
| PREV LETTER NEXT LETTER | FRAMES NO FRAMES | |||||||||